
RADIXSORT 

 Radix = “The base of a number system” (Webster’s 

dictionary) 

 History: used in 1890 U.S. census by Hollerith* 

 Idea: BinSort on each digit, bottom up. 
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RADIXSORT – MAGIC!  IT WORKS. 

 Input list:  
126, 328, 636, 341, 416, 131, 328 

 BinSort on lower digit: 
341, 131, 126, 636, 416, 328, 328 

 BinSort result on next-higher digit: 
416, 126, 328, 328, 131, 636, 341 

 BinSort that result on highest digit: 
126, 131, 328, 328, 341, 416, 636 
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NOT MAGIC.  IT PROVABLY WORKS. 

 Keys 

 N-digit numbers 

 base B 

 Claim: after ith BinSort, least significant i digits are 

sorted. 

 e.g. B=10, i=3, keys are 1776 and 8234.  8234 comes 

before 1776 for last 3 digits. 
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INDUCTION TO THE RESCUE!!! 

 base case: 

 i=0.  0 digits are sorted (that wasn’t hard!) 
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INDUCTION IS RESCUING US… 

 Induction step 

 assume for i, prove for i+1. 

 consider two numbers: X, Y.  Say Xi is ith digit of X (from 
the right) 
 Xi+1 < Yi+1 then i+1th BinSort will put them in order 

 Xi+1 > Yi+1 , same thing 

 Xi+1 = Yi+1 , order depends on last i digits.  Induction hypothesis 
says already sorted for these digits.  (Careful about ensuring that 
your BinSort preserves order aka “stable”…) 
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PALEONTOLOGY FACT 

 Early humans had to survive without induction. 
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RUNNING TIME OF RADIXSORT 

How many passes? 

How much work per pass? 

Total time? 
 

Conclusion 
 Not truly linear if K is large. 

 In practice 
 RadixSort only good for large number of items, 

relatively small keys 

 Hard on the cache, vs. MergeSort/QuickSort 
7 



WHAT DATA TYPES CAN YOU RADIXSORT? 

 Any type T that can be BinSorted 

 Any type T that can be broken into parts A and B, 

 You can reconstruct T from  A and B  

 A can be RadixSorted 

 B can be RadixSorted 

 A is always more significant than B, in ordering 
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EXAMPLE: 

 1-digit numbers can be BinSorted 

 2 to 5-digit numbers can be BinSorted without using 
too much memory 

 6-digit numbers, broken up into A=first 3 digits, 
B=last 3 digits. 

 A and B can reconstruct original 6-digits 

 A and B each RadixSortable as above 

 A more significant than B 
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RADIXSORTING STRINGS 

 1 Character can be BinSorted 

 Break strings into characters 

 Need to know length of biggest string (or calculate 

this on the fly). 
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RADIXSORTING STRINGS EXAMPLE 
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5th 

pass 

4th 

pass 

3rd 

pass 

2nd 

pass 

1st 

pass 

String 1 z i p p y 

String 2 z a p 

String 3 a n t s 

String 4 f l a p s 

NULLs are 

just like fake 

characters 



RADIXSORTING STRINGS RUNNING TIME 

 N is number of strings 

 L is length of longest string 

 RadixSort takes O(N*L) 
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RADIXSORTING IEEE FLOATS/DOUBLES 

 You can RadixSort real numbers, in most 

representations 

 We do IEEE floats/doubles, which are used in 

C/C++. 

 Some people say you can’t RadixSort reals.  In 

practice (like IEEE reals) you can. 
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ANATOMY OF A REAL NUMBER 
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-1.3892*1024 

+1.507*10-17 

Sign 

(positive or 

negative) 

Significand (a.k.a. 

mantissa) 

Exponent 



IEEE FLOATS IN BINARY* 

 Sign: 1 bit 

 Significand: always 1.fraction.  fraction uses 23 bits 

 Biased exponent: 8 bits.   

 Bias: represent –127 to +127 by adding 127 (so range is 0-

254) 
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-1.0110100111*21011 

+1.101101001*2-1 

* okay, simplified to focus on the essential ideas. 



OBSERVATIONS 

 significand always starts with 1 

  only one way to represent any number 

 Exponent always more significant than significand 

 Sign is most significant, but in a weird way 
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PSEUDOCODE 
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procedure RadixSortReals (Array[1..N]) 

 

RadixSort Significands in Array as unsigned ints 

RadixSort biased exponents in Array as u-ints 

 

Sweep thru Array, 

 put negative #’s separate from positive #’s. 

Flip order of negative #’s, & put them before 

 the positive #’s. 

 

Done. 


