
RADIXSORT

 Radix = “The base of a number system” (Webster’s

dictionary)

 History: used in 1890 U.S. census by Hollerith*

 Idea: BinSort on each digit, bottom up.

1

RADIXSORT – MAGIC! IT WORKS.

 Input list:
126, 328, 636, 341, 416, 131, 328

 BinSort on lower digit:
341, 131, 126, 636, 416, 328, 328

 BinSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

 BinSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

2

NOT MAGIC. IT PROVABLY WORKS.

 Keys

 N-digit numbers

 base B

 Claim: after ith BinSort, least significant i digits are

sorted.

 e.g. B=10, i=3, keys are 1776 and 8234. 8234 comes

before 1776 for last 3 digits.

3

INDUCTION TO THE RESCUE!!!

 base case:

 i=0. 0 digits are sorted (that wasn’t hard!)

4

INDUCTION IS RESCUING US…

 Induction step

 assume for i, prove for i+1.

 consider two numbers: X, Y. Say Xi is ith digit of X (from
the right)
 Xi+1 < Yi+1 then i+1th BinSort will put them in order

 Xi+1 > Yi+1 , same thing

 Xi+1 = Yi+1 , order depends on last i digits. Induction hypothesis
says already sorted for these digits. (Careful about ensuring that
your BinSort preserves order aka “stable”…)

5

PALEONTOLOGY FACT

 Early humans had to survive without induction.

6

RUNNING TIME OF RADIXSORT

How many passes?

How much work per pass?

Total time?

Conclusion
 Not truly linear if K is large.

 In practice
 RadixSort only good for large number of items,

relatively small keys

 Hard on the cache, vs. MergeSort/QuickSort
7

WHAT DATA TYPES CAN YOU RADIXSORT?

 Any type T that can be BinSorted

 Any type T that can be broken into parts A and B,

 You can reconstruct T from A and B

 A can be RadixSorted

 B can be RadixSorted

 A is always more significant than B, in ordering

8

EXAMPLE:

 1-digit numbers can be BinSorted

 2 to 5-digit numbers can be BinSorted without using
too much memory

 6-digit numbers, broken up into A=first 3 digits,
B=last 3 digits.

 A and B can reconstruct original 6-digits

 A and B each RadixSortable as above

 A more significant than B

9

RADIXSORTING STRINGS

 1 Character can be BinSorted

 Break strings into characters

 Need to know length of biggest string (or calculate

this on the fly).

10

RADIXSORTING STRINGS EXAMPLE

11

5th

pass

4th

pass

3rd

pass

2nd

pass

1st

pass

String 1 z i p p y

String 2 z a p

String 3 a n t s

String 4 f l a p s

NULLs are

just like fake

characters

RADIXSORTING STRINGS RUNNING TIME

 N is number of strings

 L is length of longest string

 RadixSort takes O(N*L)

12

RADIXSORTING IEEE FLOATS/DOUBLES

 You can RadixSort real numbers, in most

representations

 We do IEEE floats/doubles, which are used in

C/C++.

 Some people say you can’t RadixSort reals. In

practice (like IEEE reals) you can.

13

ANATOMY OF A REAL NUMBER

14

-1.3892*1024

+1.507*10-17

Sign

(positive or

negative)

Significand (a.k.a.

mantissa)

Exponent

IEEE FLOATS IN BINARY*

 Sign: 1 bit

 Significand: always 1.fraction. fraction uses 23 bits

 Biased exponent: 8 bits.

 Bias: represent –127 to +127 by adding 127 (so range is 0-

254)

15

-1.0110100111*21011

+1.101101001*2-1

* okay, simplified to focus on the essential ideas.

OBSERVATIONS

 significand always starts with 1

 only one way to represent any number

 Exponent always more significant than significand

 Sign is most significant, but in a weird way

16

PSEUDOCODE

17

procedure RadixSortReals (Array[1..N])

RadixSort Significands in Array as unsigned ints

RadixSort biased exponents in Array as u-ints

Sweep thru Array,

 put negative #’s separate from positive #’s.

Flip order of negative #’s, & put them before

 the positive #’s.

Done.

